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Overview

® Read-copy update (RCU)
o Synchronization mechanism used in the Linux kernel
o Mainly used in lower level languages such as C or C++

® Explored the viability of RCU in a garbage collected
language: Go

Go RCU provides similar performance to C++ RCU
Code simpler and less error-prone in Go RCU
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Introduction

® Clock speeds are no longer increasing exponentially
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Introduction

® Clock speeds are no longer increasing exponentially
® Computers have more cores
® Parallelization is becoming increasingly important
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Unprotected Data Access: Initial List

Element A Element B Element C
0100010 10010111 00001111




Unprotected Data Access: Write Starts

Element A Element B Element C
0100010 11000111 00001111

EN



Unprotected Data Access: Read Occurs

Element A Element B Element C
0100010 11000111 00001111

7

Read 11000111



Unprotected Data Access: Write Finishes

Element A
0100010

Element B

11001010

>

Read 11000111

Element C
00001111

® The reader has read a corrupted value from the list
® This could the program to crash




Synchronizing Parallel Processes

® Multithreaded programs require synchronization
® Many different mechanisms to achieve such
synchronization




Read-Write Mutexes

® Mutexes are the conventional method of synchronization
® “Locks” to prevent unsafe concurrent access to memory
® Writing and reading threads cannot operate concurrently




Write Lock

Element A

Element B

s/

Element C




Read Lock

Element A > Element B > Element C

s/ s/ >/




Problem: Locks Limit Scalability
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® Ideally, performance
should increase linearly
with the number of cores

® If there is high contention,
threads are essentially
serialized
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Read-Copy Update



Basic RCU Properties

Prevents data corruption
Never blocks readers
Writers are still serialized and have higher overhead

Good for high reading thread to writing thread ratios
o This happens a lot in the Linux kernel




RCU Use in Linux Kernel
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Example: Initial Linked List

Element A > Element B > Element C

>/ Y >/



Example: Copy Element

Element A > ElementB % Element C
5/ >/ s/
New
Element B

EN



Example: Update List Atomically

Element A Element B % Element C
5/ >/ s/
New
Element B

S/



Example: All Previous Readers Finish

Element A Element B » Element C
B4 B4
New
Element B

S/



Example: Free Old Element

Element A Ele t B Element C

5/ ' ) 5/
New
Element B

S/




When Can We Free Memory?

Quiescent state: any time period during which a thread is

not reading

Grace period: time it takes for all threads to go through at
least one quiescent state

Reader Reader Reader
Reader Reader Grace Period
— — Extends as
Reader | Reader Needed

Reader

http://lwn.net/Articles/323929/




RCU in the Linux Kernel

® Linux kernel written in C

® No garbage collectorin C

o Old copies need to be manually freed

o Need to wait until a grace period has passed until freeing
o Difficulty of implementation leads to bugs
O

For example, a recent Linux kernel bug (#102291) dealt with

RCU accidentally taking a write lock during a read-side

critical section
B Avoiding bugs is very important in widely used systems

® “RCU is a poor man’s garbage collector”
- Paul E. McKenney, Inventor of RCU




Our Idea: RCU in a Garbage Collected Language

® Why make a “poor man’s garbage collector” when a full
garbage collector is available?

® Garbage collection makes usage significantly easier

o Garbage collector automatically decides when to free

memory - no need to keep track of grace periods manually!
o Bug 102291 would be avoided in GC environment
® Decided to use Go

o Designed by Google




Why Go?

® For system-level programming
o Could be used to write a kernel
® Good garbage collector
o Is it good enough?




Experiment Design



Goals

® Is RCU in a garbage collected language a viable option?
a. lIs it easier to implement and/or use?
b. Does it provide performance benefits similar to RCU in

manual memory management languages?




Our Approach

® Implemented RCU in Go
® Compared amount of code that had to be written
® Compared RCU performance in Go to performance in C++




Benchmark Setup

e Thread 2 Thread 3 Thread 4
WM?I:Q 1;hreard 10 million 10 million 10 million.
el operations ‘operations. operations

Thread 5 Thread 6 Thread 7 Thread 8
10 million 10 million o .
‘operations ‘operations Bl operetons

We vary the number of operations that are writes. The % writes

is the mix. We used mixes up to 30%.
e —



Results



Go RCU is Indeed Simpler

API Function C++ Necessary Go Necessary
rcu_read_lock() Yes No
rcu_read_unlock() Yes No
synchronize_rcu() Yes No
call_rcu() Yes No
rcu_assign_pointer() Yes No
rcu_dereference() Yes No

® Programmers are likely to write fewer bugs since it is
simpler




Performance of C++ RCU vs. Go RCU

RCU in C++ and Go
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Garbage Collection Counts

Go Number of Garbage Collections vs Mix

600

450

300

o Number of GC

150

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Mix




Factoring Out the Programming Language

® Benchmark has RCU portions and non-RCU portions
o Need to focus on RCU portion




Evaluating RCU

Go RCU

garbage collected

<b aseli ne>

Go Mutex

goroutine
RW mutex

VS.
-Performance
-Ease of
Implementation

C++ RCU

manual memory mgmt.
userspace-rcu: grace period

<baseline>

C++ Mutex

pthread
RW mutex

Benchmarked each implementation with same test parameters




Speedups over RW Mutex

Improvements with Go and C++ RCU

100.00% —a— C++ %
Speedup
wi RCL

A0.00% —— G0 %

= Speedup
£ w/ RCU
g
o 0.00%
=

-50.00%

-100.00%

0.00 0.05 0.10 0.15 0.20 0.25 0.30




Conclusions



Conclusions

RCU in a garbage collected environment is promising
Performance improvement vs. RW mutex is similar if not
better than improvement in C++

® Don’t need to worry about freeing old copies because of

garbage collector

o Many functions simply not necessary
o Fewer opportunities for bugs




Future Work

® Integrate Go RCU into an actual application (i.e. cache) to
see its real-world performance

® Use Go RCU inside an OS kernel to see how it would
perform in kernel space
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