Read-Copy Update in a
Garbage Collected Environment

By Harshal Sheth, Aashish Welling, and Nihar Sheth

Overview

® Read-copy update (RCU)
o Synchronization mechanism used in the Linux kernel
o Mainly used in lower level languages such as C or C++

® Explored the viability of RCU in a garbage collected
language: Go

Go RCU provides similar performance to C++ RCU
Code simpler and less error-prone in Go RCU

Outline

Problem

RCU Background
Experiment Design
Results
Conclusions

Future Work
Acknowledgements

Introduction

® Clock speeds are no longer increasing exponentially

10,000,000
,
Dual-Core Itanium 2 a /
1,000,000 =
; =
Intel CPU Trends 4
(sources: Intel, Wikipedia, K. Olukotun) g
100,000
10,000
1,000
100
10
i m Transistors (000) L
@ Clock Speed (ViHz)
[X] ® A Power (W)
@ Perf/Clock (ILP)
0 I [[

1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.extremetech.com/wp-content/uploads/2012/02/CPU-Scaling.jpg

Introduction

® Clock speeds are no longer increasing exponentially
® Computers have more cores
® Parallelization is becoming increasingly important

i Processor [wattl no h
Il Graphics | iy :f"." R gt = Controller

: ’Tﬂh T -.i';- F '“.;I'] YR , imciuaing
[||: [SE W | il Dispiay,

DMI and

ﬂ&cache || mseiro
ComE o g pnen |

']
"
1
i

httis://cnet3.cbsistatic.com/hub/i/2011/09/13/97506276-fdb9-1192-Sc7c-d4ae52962bcc/2119600099bf31954021004a3c1ee115/inside intel sandi bridie iuad core irocessor.lii

Unprotected Data Access: Initial List

Element A Element B Element C
0100010 10010111 00001111

Unprotected Data Access: Write Starts

Element A Element B Element C
0100010 11000111 00001111

EN

Unprotected Data Access: Read Occurs

Element A Element B Element C
0100010 11000111 00001111

7

Read 11000111

Unprotected Data Access: Write Finishes

Element A
0100010

Element B

11001010

>

Read 11000111

Element C
00001111

® The reader has read a corrupted value from the list
® This could the program to crash

Synchronizing Parallel Processes

® Multithreaded programs require synchronization
® Many different mechanisms to achieve such
synchronization

Read-Write Mutexes

® Mutexes are the conventional method of synchronization
® “Locks” to prevent unsafe concurrent access to memory
® Writing and reading threads cannot operate concurrently

Write Lock

Element A

Element B

s/

Element C

Read Lock

Element A > Element B > Element C

s/ s/ >/

Problem: Locks Limit Scalability

Ll
n

® Ideally, performance
should increase linearly
with the number of cores

® If there is high contention,
threads are essentially
serialized

|
"ideal" ——

L
o=

P2
n

P
=

il
n

-
=

Hash Table Searches per Microsecond
n
I

=

i

=
|
[
i
I
Il
{
{
|
|

._i
i
I
[
B
p
)
1

1 2 3 4
CPUs

From Paul McKenney’s dissertation

Read-Copy Update

Basic RCU Properties

Prevents data corruption
Never blocks readers
Writers are still serialized and have higher overhead

Good for high reading thread to writing thread ratios
o This happens a lot in the Linux kernel

RCU Use in Linux Kernel

12668

® Used commonlyin
Linux kernel and
normally
implemented in C 8900 |

® Linuxis used

everywhere
o Android av08 |
o Servers
o etc.

18888 [

Gaea -

$# RCU AFPI Uses

26888 -

2082
2084
2006
2008
2018
2012
2014
2016
2018

Year

From http://www.rdrop.com/~paulmck/RCU/linuxusage/linux-RCU.png

Example: Initial Linked List

Element A > Element B > Element C

>/ Y >/

Example: Copy Element

Element A > ElementB % Element C
5/ >/ s/
New
Element B

EN

Example: Update List Atomically

Element A Element B % Element C
5/ >/ s/
New
Element B

S/

Example: All Previous Readers Finish

Element A Element B » Element C
B4 B4
New
Element B

S/

Example: Free Old Element

Element A Ele t B Element C

5/ ') 5/
New
Element B

S/

When Can We Free Memory?

Quiescent state: any time period during which a thread is

not reading

Grace period: time it takes for all threads to go through at
least one quiescent state

Reader Reader Reader
Reader Reader Grace Period
— — Extends as
Reader | Reader Needed

Reader

http://lwn.net/Articles/323929/

RCU in the Linux Kernel

® Linux kernel written in C

® No garbage collectorin C

o Old copies need to be manually freed

o Need to wait until a grace period has passed until freeing
o Difficulty of implementation leads to bugs
O

For example, a recent Linux kernel bug (#102291) dealt with

RCU accidentally taking a write lock during a read-side

critical section
B Avoiding bugs is very important in widely used systems

® “RCU is a poor man’s garbage collector”
- Paul E. McKenney, Inventor of RCU

Our Idea: RCU in a Garbage Collected Language

® Why make a “poor man’s garbage collector” when a full
garbage collector is available?

® Garbage collection makes usage significantly easier

o Garbage collector automatically decides when to free

memory - no need to keep track of grace periods manually!
o Bug 102291 would be avoided in GC environment
® Decided to use Go

o Designed by Google

Why Go?

® For system-level programming
o Could be used to write a kernel
® Good garbage collector
o Is it good enough?

Experiment Design

Goals

® Is RCU in a garbage collected language a viable option?
a. lIs it easier to implement and/or use?
b. Does it provide performance benefits similar to RCU in

manual memory management languages?

Our Approach

® Implemented RCU in Go
® Compared amount of code that had to be written
® Compared RCU performance in Go to performance in C++

Benchmark Setup

e Thread 2 Thread 3 Thread 4
WM?I:Q 1;hreard 10 million 10 million 10 million.
el operations ‘operations. operations

Thread 5 Thread 6 Thread 7 Thread 8
10 million 10 million o .
‘operations ‘operations Bl operetons

We vary the number of operations that are writes. The % writes

is the mix. We used mixes up to 30%.
e —

Results

Go RCU is Indeed Simpler

API Function C++ Necessary Go Necessary
rcu_read_lock() Yes No
rcu_read_unlock() Yes No
synchronize_rcu() Yes No
call_rcu() Yes No
rcu_assign_pointer() Yes No
rcu_dereference() Yes No

® Programmers are likely to write fewer bugs since it is
simpler

Performance of C++ RCU vs. Go RCU

RCU in C++ and Go

160 —— C++ RCU (s)
—— Go RCU (s)

120

80

Time (seconds)

40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

N

Garbage Collection Counts

Go Number of Garbage Collections vs Mix

600

450

300

o Number of GC

150

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Mix

Factoring Out the Programming Language

® Benchmark has RCU portions and non-RCU portions
o Need to focus on RCU portion

Evaluating RCU

Go RCU

garbage collected

<b aseli ne>

Go Mutex

goroutine
RW mutex

VS.
-Performance
-Ease of
Implementation

C++ RCU

manual memory mgmt.
userspace-rcu: grace period

<baseline>

C++ Mutex

pthread
RW mutex

Benchmarked each implementation with same test parameters

Speedups over RW Mutex

Improvements with Go and C++ RCU

100.00% —a— C++ %
Speedup
wi RCL

A0.00% —— G0 %

= Speedup
£ w/ RCU
g
o 0.00%
=

-50.00%

-100.00%

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Conclusions

Conclusions

RCU in a garbage collected environment is promising
Performance improvement vs. RW mutex is similar if not
better than improvement in C++

® Don’t need to worry about freeing old copies because of

garbage collector

o Many functions simply not necessary
o Fewer opportunities for bugs

Future Work

® Integrate Go RCU into an actual application (i.e. cache) to
see its real-world performance

® Use Go RCU inside an OS kernel to see how it would
perform in kernel space

Acknowledgements

We would like to thank:

Our mentor Cody Cutler for his guidance and insight

Prof. Frans Kaashoek for suggesting this project

Our parents for their constant support and encouragement
The MIT PRIMES program for making this research possible

